A pilot study of gene testing of genetic bone dysplasia using targeted next-generation sequencing

作者:Zhang, Huiwen*; Yang, Rui; Wang, Yu; Ye, Jun; Han, Lianshu; Qiu, Wenjuan; Gu, Xuefan
来源:Journal of Human Genetics, 2015, 60(12): 769-776.
DOI:10.1038/jhg.2015.112

摘要

Molecular diagnosis of genetic bone dysplasia is challenging for non-expert. A targeted next-generation sequencing technology was applied to identify the underlying molecular mechanism of bone dysplasia and evaluate the contribution of these genes to patients with bone dysplasia encountered in pediatric endocrinology. A group of unrelated patients (n=82), characterized by short stature, dysmorphology and X-ray abnormalities, of which mucopolysacharidoses, GM1 gangliosidosis, mucolipidosis type II/III and achondroplasia owing to FGFR3 G380R mutation had been excluded, were recruited in this study. Probes were designed to 61 genes selected according to the nosology and classification of genetic skeletal disorders of 2010 by Illumina's online DesignStudio software. DNA was hybridized with probes and then a library was established following the standard Illumina protocols. Amplicon library was sequenced on a MiSeq sequencing system and the data were analyzed by MiSeq Reporter. Mutations of 13 different genes were found in 44 of the 82 patients (54%). Mutations of COL2A1 gene and PHEX gene were found in nine patients, respectively (9/44=20%), followed by COMP gene in 8 (18%), TRPV4 gene in 4 (9%), FBN1 gene in 4 (9%), COL1A1 gene in 3 (6%) and COL11A1, TRAPPC2, MATN3, ARSE, TRPS1, SMARCAL1, ENPP1 gene mutations in one patient each (2% each). In conclusion, mutations of COL2A1, PHEX and COMP gene are common for short stature due to bone dysplasia in outpatient clinics in pediatric endocrinology. Targeted next-generation sequencing is an efficient way to identify the underlying molecular mechanism of genetic bone dysplasia.