NiCl2-Down-Regulated Antioxidant Enzyme mRNA Expression Causes Oxidative Damage in the Broiler(')s Kidney

作者:Guo, Hongrui; Wu, Bangyuan; Cui, Hengmin*; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Xun; Deng, Jie; Yin, Shuang; Li, Jian; Tang, Kun
来源:Biological Trace Element Research, 2014, 162(1-3): 288-295.
DOI:10.1007/s12011-014-0132-3

摘要

The kidney serves as a major organ of nickel (Ni) excretion and is a target organ for acute Ni toxicity due to Ni accumulation. There are no studies on the Ni or Ni compound-regulated antioxidant enzyme mRNA expression in animals and human beings at present. This study was conducted to investigate the pathway of nickel chloride (NiCl2)-caused renal oxidative damage by the methods of biochemistry, quantitative real-time polymerase chain reaction, and enzyme-linked immunosorbent assay. Two hundred and eighty one-day-old broilers were randomly divided into four groups and fed on a control diet and three experimental diets supplemented with 300, 600, and 900 mg/kg of NiCl2 for 42 days. Dietary NiCl2 elevated the malondialdehyde (MDA), nitric oxide (NO), 8-hydroxy-2'-deoxyguanosine (8-OHdG) contents, and reduced the ability to inhibit hydroxy radical in the NiCl2-treated groups. Also, the renal inducible nitric oxide synthase (iNOS) activity and mRNA expression levels were increased. The total antioxidant (T-AOC) and activities of antioxidant enzymes including copper zinc superoxide dismutase (CuZn-SOD), manganese superoxide dismutase (Mn-SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GR), and glutathione-s-transferase (GST) were decreased, and the glutathione (GSH) contents as well were decreased in the kidney. Concurrently, the renal CuZn-SOD, Mn-SOD, CAT, GSH-Px, GST, and GR mRNA expression levels were decreased. The above-mentioned results showed that dietary NiCl2 in excess of 300 mg/kg caused renal oxidative damage by reducing mRNA expression levels and activities of antioxidant enzymes, and then enhancing free radicals generation, lipid peroxidation, and DNA oxidation.