摘要

The aim of this paper is to present an optimization-under-constraints approach to design power converters. In fact, the time-domain simulation is very useful to evaluate the performances of power converters when the design solution area of the studied converter is much reduced due to the designer's experience and when only few design aspects are considered. However, the design of today's power converters is more and more complicated because it needs to consider multiphysic and multidomain constraints. In this context, a design approach using optimization under constraints allows exploring a large solution area by considering the multiphysic aspect and a high number of optimization parameters. In this way, this paper proposes the use of analytical models to carry out a compromise between the model accuracy and the computing time when optimizing power converters under volume, electromagnetic compatibility, efficiency, thermal, and control constraints. This approach is applied to optimize a two-time-scale flyback converter. The optimized converter is implemented, and the proposed approach is validated by measurements.

  • 出版日期2010-11