摘要

Heat entransy loss is defined and both the concepts of entropy generation and heat entransy loss are applied to the analyses of heat-work conversion and heat transfer processes in this paper. In heat-work conversion, it is found that the minimum entropy generation rate relates to the maximum output power under the conditions of the prescribed heat absorption and the equivalent thermodynamic forces corresponding to the heat absorption and release of the system, while the maximum heat entransy loss relates to the maximum output power under the conditions of the prescribed heat absorption and the equivalent temperatures corresponding to the heat absorption and release of the system. In heat transfer, the maximum entropy generation rate is consistent with the maximum heat transfer rate with prescribed equivalent thermodynamic force difference, while the minimum entropy generation rate corresponds to the minimum equivalent thermodynamic force difference with prescribed heat transfer rate. Furthermore, when the concept of heat entransy loss is used, the maximum heat entransy loss rate corresponds to the maximum heat transfer rate with prescribed equivalent temperature difference, while the minimum heat entransy loss rate corresponds to the minimum equivalent temperature difference with prescribed heat transfer rate. The numerical results of some examples verify the theoretical analyses.