摘要

Measurements of tree tissue chemistry are influenced by the precision and accuracy of laboratory analyses, sampling position within the tree, variation among replicate trees of the same species, and variation from year to year. We characterized these sources of uncertainty for six northern hardwood species and compared them with observed rates of long-term change. Uncertainty associated with laboratory quality control was small (1%-5%) and differed among elements, with K concentrations exhibiting the lowest accuracy and precision. Sampling position within the tree was more important for branches (the coefficient of variation was 23%) and wood (37%) than for foliage or bark (12% for both) (p < 0.001). Foliar N and P concentrations in leaves were less variable than other elements or tissue types both from tree to tree (p = 0.02) and from year to year (p = 0.03), which means that more samples would be needed to detect differences over space or time for Ca, Mg, or K in branches or wood. Concentrations of foliar N increased over 25 years at the Huntington Forest (p = 0.03) by > 16%. Uncertainty analysis can be used to guide the allocation of sampling effort, depending on the elements and tissue types of interest and the objectives of the study.

  • 出版日期2016-3