摘要

When populations with similar histories of directional selection are crossed, their offspring may differ in mean phenotype as compared with the average for the parental populations, often exhibiting enhancement of the mean phenotype (termed heterosis or hybrid vigor). We tested for heterosis in a cross of two replicate lines of mice selectively bred for high voluntary wheel running for 53 generations. Mice were paired to produce four sets of F1 offspring: two purebred High Runner (HR) lines and the hybrid reciprocal crosses. The purebred HR showed statistically significant, sex-dependent differences in body mass, wheel revolutions, running duration, mean running speed, and (controlling for body mass) organ masses (heart ventricles, liver, spleen, triceps surae muscle). Hybrid males ran significantly more revolutions than the purebred males, mainly via increased running speeds, but hybrid females ran intermediate distances, durations, and speeds, as compared with the purebred females. In both sexes, ventricles were relatively smaller in hybrids as compared with purebred HR. Overall, our results demonstrate differential and sex-specific responses to selection in the two HR lines tested, implying divergent genetic architectures underlying high voluntary exercise.

  • 出版日期2011-7