摘要

One crossover point between a pair of homologous chromosomes in meiosis appears to interfere with occurrence of another in the neighborhood. It has been revealed that Drosophila and Neurospora, in spite of their large difference in the frequency of crossover points, show very similar plots of coincidence-a measure of the interference-against the genetic distance of the interval, defined as one-half the average number of crossover points within the internal. We here propose a simple reaction-diffusion model, where a "randomly walking" precursor becomes immobilized and matures into a crossover point. The interference is caused by pair-annihilation of the random walkers due to their collision and by annihilation of a random walker due to its collision with an immobilized point. This model has two parameters-the initial density of the random walkers and the rate of its processing into a crossover point. We show numerically that, as the former increases and/or the latter decreases, plotted curves of the coincidence vs. the genetic distance converge on a unique curve. Thus, our model explains the similarity between Drosophila and Neurospora without parameter values adjusted finely, although it is not a "genetic model" but is a "physical model," specifying explicitly what happens physically.