摘要

Conceptual design, system-level models, and optimization of operation are presented for a cogeneration solar-thermal plant. The solar-thermal energy collected and concentratd in a salt pond is used in a regenerative Rankine steam cycle with an extraction turbine to produce electricity and process steam. The desalination system is based on reverse osmosis (RO) and multi-effect distillation (MED). An equation-oriented modeling environment is used for the development of time-dependent system-level models required for optimization of the plant. A meteorological radiation model is used to estimate the hourly distribution of beam radiation as a function of time (day and hour), location, and local weather (mainly visibility and humidity). A recently developed model is used to estimate the field efficiency, including projection losses and shading/blocking for a given heliostat layout. Time-invariant optimal operating conditions are presented for a summer day, considering Cyprus as a case study. Seawater desalination processes, RO and MED, are modeled by adapting and extending models from the literature. A control-volume model is developed for the steam cycle based on the first and second law, with given isentropic efficiencies, turbine leaks, and a detailed model for thermodynamic properties of steam/water. This model is validated and allows for optimization over a wide range of operating conditions, e.g., various extraction pressures. The optimization problem is formulated as a nonlinear program (NLP) with dynamics embedded and a heuristic global optimization approach is used. The sequential method of optimization is used, decoupling the simulation from the optimization. The results show that for the plant size considered (4 MW, equivalent nominal capacity) and the MED design chosen based on the literature and industry practice, RO is preferred over MED from an energy point of view. In addition, under the current feed-in tariff (FiT) and water prices in Cyprus, extracting steam for MED is not recommended. In contrast, if current market prices for electricity and water in Cyprus are used, i.e., FiT is neglected, with a typical steam cycle design, extracting steam for MED at low pressures yields maximum income. A new process configuration is presented based on the findings from the case studies, resulting in significantly higher income and exergetic efficiencies.

  • 出版日期2011-9