摘要

This paper discusses the antenna phase center trajectory (APCT) design for the "one-active" linear-array 3-D imaging SAR (LASAR). First, we discuss the principle of the one-active LASAR and demonstrate its feasibility by experiment. To describe the 3-D spatial resolution of the one-active LASAR, the relationship between the 3-D ambiguity AF) of the one-active LASAR and the system parameters is discussed in detail. Based on the analysis, we divide the APCT design into three topics: the direction of the linear array, the length of the linear array, and the switching mode of the active element [named as antenna phase center APCF)]. On the first topic, we conclude that, when the range, along-track, and cross-track directions are orthogonal to each other, the ambiguity region of the one-active LASAR attains minimum, and the 3-D spatial resolution can be separated into the range, along-track, and cross-track resolutions. On the second topic, we find that the cross-track resolution is determined by the length of the linear array and the frequency of the carrier. To ensure that the length of the linear array is acceptable, the carrier should be W-band wave or millimeter wave. On the third topic, the effect of APCF is researched, and we find that both the periodic APCF and the pseudorandom APCF can produce 3-D resolution, except for the periodic rectangle APCF. For the pseudorandom APCF and the periodic APCF with short period, the cross-range 2-D AF is or can be approximated as the product of two 1-D AFs in the along- and cross-track directions. Finally, the distribution of the pseudorandom APCF is optimized by the Lagrange multiplier method under the minimum variance criterion, and we find that, when the pseudorandom APCF obeys the parabolic distribution, the cross-range 2-D AF is optimal.

  • 出版日期2010-3
  • 单位中国电子科技集团公司第二十九研究所; 电子科技大学