摘要

Gas-filled microbubbles have been developed as ultrasound contrast and drug delivery agents. Microbubbles can be produced by processing surfactants using sonication, mechanical agitation, microfluidic devices, or homogenization. Recently, lipid-based oxygen microbubbles (LOMs) have been designed to deliver oxygen intravenously during medical emergencies, reversing life-threatening hypoxemia, and preventing subsequent organ injury, cardiac arrest, and death. We present methods for scaled-up production of highly oxygenated microbubbles using a closed-loop high-shear homogenizer. The process can produce 2 L of concentrated LOMs (90% by volume) in 90 min. Resulting bubbles have a mean diameter of similar to 2 mu m, and a rheologic profile consistent with that of blood when diluted to 60 volume %. This technique produces LOMs in high capacity and with high oxygen purity, suggesting that this technique may be useful for translational research labs.

  • 出版日期2014-5