摘要

We investigated the thermal stability of a new ternary amorphous metal thin film, Ta2.4Ni2.2Si, and assessed its suitability as a Cu diffusion barrier for semiconductor device applications. Transmission electron microscopy was coupled with atom probe tomography to provide a detailed understanding of the atomic-scale evolution of both structure and composition as a function of annealing temperature. We show that the amorphous structure is stable up to > 800 degrees C under ultrahigh vacuum, while annealing to 900 degrees C induces nano-crystallization of a single ternary phase in an amorphous matrix. The implications of crystallization and solute partitioning are examined in the context of high-temperature stability to aid in the design and understanding of this new class of thin film materials.

  • 出版日期2016-2-1