摘要

The installed capacity of wind generation and photovoltaics (PV) in many countries is going to dominate generation fleets in a bid to meet growing renewable energy targets. Synchronous inertia has never been problematic as there was more available than needed, but it is being significantly reduced due to the increasing integration of nonsynchronous renewable generation. When the low bidding priced generation of wind and PV becomes considerably large, conventional economic dispatch algorithms can result in less online synchronous inertia and put power system security at risk. However, the compromise of power system security due to synchronous inertia shortage is not well studied in the literature. This paper develops a synchronous inertia constrained economic dispatch algorithm to satisfy the minimum required synchronous inertia of frequency control. Synchronous condensers and wind reserve are economically allocated to alleviate any shortage of synchronous inertia and frequency control ancillary services (FCAS). A Gaussian particle swarm optimization algorithm is introduced to simultaneously co-optimize the dispatch of synchronous generators and their FCAS, wind reserve, and synchronous condensers.

  • 出版日期2018-3