摘要

Currently, water and land resources are treated as separate resources in allocation optimization for complex systems of water and land resources, which may have negative impacts on these water-land resource systems. In our study, an adaptive allocation model was established for a complex system of regional water and land resources using complex adaptive systems theory. The users of water and land resources were treated as adaptive agents, and the competition and synergy among various agents toward water and land resources were used as the driving forces for the evolution of the model. The model was accurately solved using a nested genetic algorithm to achieve the optimal joint allocation of regional water and land resources. A case study was conducted in the city of Kiamusze in Heilongjiang Province, and the results indicated that the evolution of the model was consistent with the actual behaviors of adaptive agents. Moreover, after the implementation of the optimized allocation results, the economic benefits in the study area were expected to increase by 3.34 %, and the comprehensive user satisfaction index regarding water increased from 0.61 to 0.73; moreover, the ecological footprint of the ecological sector increased by 5.6 %. Our results provide important guidance for achieving the sustainable use of regional water and land resources.