摘要

The B3LYP/6-31G(d) simulations of competing CDA and HDA reactions between cyclopentadiene and (E)-2-arylnitroethenes prove that regardless of the medium polarity, the processes leading to respective 5-nitro-6-aryl-bicyclo-[2,2,0]-hept-2-enes 3,4 (paths A and B) should be most favoured, and the more electrophilic (E)-2-(p-nitrophenyl)-nitroethene should be more reactive than the less electrophilic (E)-2-(p-methoxyphenyl)-nitroethene. Asymmetry of the transition complexes on the favoured pathways increases with increase of medium polarity, but not sufficiently to enforce the zwitterionic mechanism. Analysis of competing pathways leading to HDA adducts proves that not all these compounds can be formed directly from the adducts. In particular, on the path C, the initially formed 5-nitro-6-aryl-bicyclo-[2,2,0]-hept-2-enes 3 is converted to 2-phenyl-4-aza-5-oxy-bicyclo-[3,4,0]-nona-3,7-diene N-oxides 5 as a result of a [3.3]-sigmatropic shift. On the paths D-F leading to 2-phenyl-4-aza-5-oxy-bicyclo-[3,4,0]-nonadienes N-oxides 6-8, the reaction proceeds according to a one-step mechanism.

  • 出版日期2011-12