摘要

In this study, a high-performance inverter, including the functions of stand-alone and grid-connected power supplies, is developed so that distributed generation units can operate individually or in a microgrid mode. In the stand-alone power-supply mode, the output ac voltage can supply to ac loads. In the grid-connected power-supply mode, the goal of power management can be achieved by controlling the amplitude and direction of the output current in the inverter. An adaptive total sliding-mode control (ATSMC) scheme is designed for the proposed high-performance inverter with a full-bridge framework. As a result, the proposed high-performance inverter with the ATSMC scheme has the output voltage with a low total harmonic distortion in the stand-alone power-supply mode and the output current with a high power factor in the grid-connected power-supply mode to provide an ac output with high-performance power quality. The effectiveness of the proposed high-performance inverter with the ATSMC is verified by experimental results of a 5-kW prototype, and the merit of the proposed ATSMC scheme is indicated in comparison with conventional proportional-integral and proportional-resonant control strategies.

  • 出版日期2013-4