摘要

This paper presents the design and simulation of improved circuits of Fuzzifier and capacitance to voltage (C2V) converter. The Fuzzifier circuit is designed based on analog advantages such as low die area, high accuracy, and simplicity which are added to the fuzzy system advantages. For implementing this idea, a programmable Membership Function Generator (MFG) including differential pair circuit as a Fuzzifier is proposed. The MFG generates arbitrary forms of Gaussian, Trapezoidal, and Triangular shapes. The shape types are achieved using control switches and different reference voltages. This structure is also general purpose in tuning the slope of Membership Functions (MFs) using scaled transistors with different W/L ratios. With a specific purpose in mind, we used it here to generate fuzzy language terms from sensed classic data of a blood glucose microsensor. Thus we proposed a C2V circuit to convert capacitance variations (from MEMS glucose microsensor) to voltage values as classic data. The proposed mentioned circuits can be applicable in design of Fuzzy Logic Controller (FLC) chips to detect blood glucose, process its data in Fuzzy environment, and control insulin injection of diabetic patients by MEMS micropumps. The simulation results are achieved by MATLAB and Hspice software in 0.35 m CMOS standard technology.

  • 出版日期2015-9