Water Dynamics in 1-Alkyl-3-methylimidazolium Tetrafluoroborate Ionic Liquids

作者:Giammanco Chiara H; Kramer Patrick L; Wong Daryl B; Fayer Michael D*
来源:Journal of Physical Chemistry B, 2016, 120(44): 11523-11538.
DOI:10.1021/acs.jpcb.6b08410

摘要

The effects of water concentration and varying alkyl chain length on the dynamics of water in 1-alkyl-3-methylimidazolium tetrafluoroborate room-temperature ionic liquids (RTILs) were characterized using two-dimensional infrared (2D IR) vibrational echo spectroscopy and polarization-selective IR pump-probe experiments to study the water hydroxyl (OD) stretching mode of dilute HOD in H2O. Three imidazolium cation alkyl chain lengths, ethyl (Emim(+)), butyl (Bmirn(+)), and decyl (Dmim(+)), were investigated. Both Bmim(+) and Dmim(+) cations have sufficiently long chains that the liquids exhibit polar-apolar segregation, whereas the Emim(+) IL has no significant apolar aggregation. Although the OD absorption spectra are independent of the chain length, the measured reorientation and spectral diffusion dynamics are chain length dependent and tend to slow when the alkyl chain is long enough for polar-apolar segregation. As the water concentration is increased, a water-associated water population forms, absorbing in a new spectral region red-shifted from the isolated, anion-associated, water population. Furthermore, the anion-associated water dynamics are accelerated. At sufficiently high water concentrations, water in all of the RTILs experiences similar dynamics, the solvent structures having been fluidized by the addition of water. The water concentration at which the dilute water dynamics changes to fluidized dynamics depends on the alkyl chain length, which determines the extent and ordering of the apolar regions. Increases in both water concentration and alkyl chain length serve to modify the ordering of the RTIL, but with opposite and competing effects on the dissolved water dynamics.

  • 出版日期2016-11-10