摘要

Ralstonia solanacearum race 3 biovar 2 (R3bv2) is an economically important soilborne plant pathogen that causes bacterial wilt disease by infecting host plant roots and colonizing the xylem vessels. Little is known about R3bv2 behavior in the host rhizosphere and early in bacterial wilt pathogenesis. To explore this part of the disease cycle, we used a novel taxis-based promoter-trapping strategy to identify pathogen genes induced in the plant rhizosphere. This screen identified several rex (root exudate expressed) genes whose promoters were upregulated in the presence of tomato root exudates. One rex gene encodes an assembly protein for a high affinity cbb(3)-type cytochrome c oxidase (cbb(3)-cco) that enables respiration in low-oxygen conditions in other bacteria. R3bv2 cbb(3)-cco gene expression increased under low-oxygen conditions, and a cbb(3)-cco mutant strain grew more slowly in a microaerobic environment (0.5% O-2). Although the cco mutant could still wilt tomato plants, symptom onset was significantly delayed relative to the wild-type parent strain. Further, the cco mutant did not colonize host stems or adhere to roots as effectively as wild type. These results suggest that R3bv2 encounters low-oxygen environments during its interactions with host plants and that the pathogen depends on this oxidase to help it succeed in planta.

  • 出版日期2010-8