摘要

Aging is associated with many physiological alterations-such as changes in sleep patterns, metabolism and food intake-suggestive of hypothalamic dysfunction, but the effects of senescence on specific hypothalamic nuclei and neuronal groups that mediate these alterations is unclear. The lateral hypothalamus and contiguous perifornical area (LH/PFA) contains several populations of neurons, including those that express the neuropeptides orexin (hypocretin) or melanin-concentrating hormone (MCH). Collectively, orexin and MCH neurons influence many integrative homeostatic processes related to wakefulness and energy balance. Here, we determined the effect of aging on numbers of orexin and MCH neurons in young adult (3-4 months) and old (26-28 months) Fisher 344/Brown Norway F1 hybrid rats. Aged rats exhibited a loss of greater than 40% of orexin-immunoreactive neurons in both the medial and lateral (relative to the fornix) sectors of the LH/PFA. MCH-immunoreactive neurons were also lost in aged rats, primarily in the medial LH/PFA. Neuronal loss in this area was not global as no change in cells immunoreactive for the pan-neuronal marker, NeuN, was observed in aged rats. Combined with other reports of altered receptor expression or behavioral responses to exogenously-administered neuropeptide, these data suggest that compromised orexin (and, perhaps, MCH) function is an important mediator of age-related homeostatic disturbances of hypothalamic origin. The orexin system may represent a crucial substrate linking homeostatic and cognitive dysfunction in aging, as well as a novel therapeutic target for pharmacological or genetic restoration approaches to preventing or ameliorating these disturbances.

  • 出版日期2011-3-31