摘要

The estimation of patient dose using Monte Carlo (MC) simulations based on the available patient CT images is limited to the length of the scan. Software tools for dose estimation based on standard computational phantoms overcome this problem; however, they are limited with respect to taking individual patient anatomy into account. The purpose of this study was to generate whole-body patient models in order to take scattered radiation and over-scanning effects into account. Thorax examinations were performed on three physical anthropomorphic phantoms at tube voltages of 80 kV and 120 kV; absorbed dose was measured using thermoluminescence dosimeters (TLD). Whole-body voxel models were built as a combination of the acquired CT images appended by data taken from widely used anthropomorphic voxel phantoms. %26lt;br%26gt;MC simulations were performed both for the CT image volumes alone and for the whole-body models. Measured and calculated dose distributions were compared for each TLD chip position; additionally, organ doses were determined. MC simulations based only on CT data underestimated dose by 8% -15% on average depending on patient size with highest underestimation values of 37% for the adult phantom at the caudal border of the image volume. The use of whole-body models substantially reduced these errors; measured and simulated results consistently agreed to better than 10%. %26lt;br%26gt;This study demonstrates that combined whole-body models can provide three-dimensional dose distributions with improved accuracy. Using the presented concept should be of high interest for research studies which demand high accuracy, e. g. for dose optimization efforts.

  • 出版日期2014-12