摘要

Grain boundaries are known to be sources and sinks for bulk vacancies, but the exchange that occurs between the grain boundary and the bulk under a low stress is still obscure. In the present paper, it is shown that grain boundaries may act as sources to emit vacancies when an anelastic deformation occurs under a compressive stress. These emitted supersaturated vacancies are combined with solute atoms to form complexes. Solute non-equilibrium grain-boundary dilution may be induced by the diffusion of complexes away from the boundary. An equation of solute concentration at grain boundary is derived under stress equilibrium during its anelastic relaxation. Furthermore, kinetic equations are also established to describe the non-equilibrium grain-boundary dilution. Additionally, an attempt is made to simulate experimental data to justify the present model.