摘要

This paper describes a power-efficient distributed TDMA slot scheduling algorithm which the slot allocation priority is controlled by distance measurement information in details. In our former proposed scheme, L-DRAND+, an extension of Lamport%26apos;s bakery algorithm for prioritized slot allocation based on the distance measurement information between nodes and a packet-based transmission power control had been applied. In this paper, we propose its enhanced scheme with a weighted rule control and state machines refinements of L-DRAND+, named L-DRAND++. This aims at the achievement of media access control methods which can construct a local wireless network practically by limiting the scope, and eliminate the redundant power consumption in the network. The proposed scheme can be shown as a possible replacement of DRAND algorithm for Z-MAC scheme in a distance-measurement-oriented manner. In addition, to evaluate the ordered node sequence determined by the algorithm, node sequence metric is proposed. By using the metric, we can evaluate protocol behaviors according to the environmental situation around the node.

  • 出版日期2014-3