A new direct absorption tunable diode laser spectrometer for high precision measurement of water vapor in the upper troposphere and lower stratosphere

作者:Sargent M R*; Sayres D S; Smith J B; Witinski M; Allen N T; Demusz J N; Rivero M; Tuozzolo C; Anderson J G
来源:Review of Scientific Instruments, 2013, 84(7): 074102.
DOI:10.1063/1.4815828

摘要

We present a new instrument for the measurement of water vapor in the upper troposphere and lower stratosphere (UT/LS), the Harvard Herriott Hygrometer (HHH). HHH employs a tunable diode near-IR laser to measure water vapor via direct absorption in a Herriott cell. The direct absorption technique provides a direct link between the depth of the observed absorption line and the measured water vapor concentration, which is calculated based on spectroscopic parameters in the HITRAN database. While several other tunable diode laser (TDL) instruments have been used to measure water vapor in the UT/LS, HHH is set apart by its use of an optical cell an order of magnitude smaller than those of other direct absorption TDLs in operation, allowing for a more compact, lightweight instrument. HHH is also unique in its integration into a common duct with the Harvard Lyman-alpha hygrometer, an independent photo-fragment fluorescence instrument which has been thoroughly validated over 19 years of flight measurements. The instrument was flown for the first time in the Mid-latitude Airborne Cirrus Properties Experiment (MACPEX) on NASA's WB-57 aircraft in spring, 2011, during which it demonstrated in-flight precision of 0.1 ppmv (1 s) with 1-sigma uncertainty of 5% +/- 0.7 ppmv. Since the campaign, changes to the instrument have lead to improved accuracy of 5% +/- 0.2 ppmv as demonstrated in the laboratory. During MACPEX, HHH successfully measured water vapor at concentrations from 3.5 to 600 ppmv in the upper troposphere and lower stratosphere. HHH and Lyman-a, measuring independently but under the same sampling conditions, agreed on average to within 1% at water vapor mixing ratios above 20 ppmv and to within 0.3 ppmv at lower mixing ratios. HHH also agreed with a number of other in situ water vapor instruments on the WB-57 to within their stated uncertainties, and to within 0.7 ppmv at low water. This agreement constitutes a significant improvement over past in situ comparisons, in which differences of 1.5-2 ppmv were routinely observed, and demonstrates that the accuracy of HHH is consistent with other instruments which use a range of detection methods and sampling techniques.

  • 出版日期2013-7