Association mapping identifies loci for canopy temperature under drought in diverse soybean genotypes

作者:Kaler Avjinder S; Ray Jeffery D; Schapaugh William T; Asebedo Antonio R; King C Andy; Gbur E E; Purcell Larry C*
来源:Euphytica, 2018, 214(8): UNSP 135.
DOI:10.1007/s10681-018-2215-2

摘要

Drought stress is a global constraint for crop production, and improving crop tolerance to drought is of critical importance. Because transpiration cools a crop canopy, a cool canopy under drought indicates a genotype still has access to soil moisture. Because measurements of canopy temperature may be increased in scale in field environments, it is particularly attractive for large-scale, phenotypic evaluations. Our objectives were to identify genomic regions associated with canopy temperature (CT) and to identify extreme genotypes for CT. A diverse panel consisting of 345 maturity group IV soybean accessions was evaluated in three environments for CT. Within each environment CT was normalized (nCT) on a scale from 0 to 1. A set of 31,260 polymorphic single nucleotide polymorphisms (SNPs) with a minor allele frequency ae 5% was used for association mapping of nCT. Association mapping identified 52 SNPs significantly associated with nCT, and these SNPs likely tagged 34 different genomic regions. Averaged across all environments, eight genomic regions showed significant associations with nCT. Several genes in the identified genomic regions had reported functions related to transpiration or water acquisition including root development, response to abscisic acid, water deprivation, stomatal complex morphogenesis, and signal transduction. Fifteen of the SNPs associated with nCT were coincident with SNPs for canopy wilting. Favorable alleles from significant SNPs may be an important resource for pyramiding genes, and several genotypes were identified as sources of drought-tolerant alleles that could be used in breeding programs for improving drought tolerance.

  • 出版日期2018-8