摘要

An angle-domain imaging condition is recommended for multicomponent elastic reverse time migration. The local slant stack method is used to separate source and receiver waves into P- and S-waves and simultaneously decompose them into local plane waves along different propagation directions. We calculated the angle-domain partial images by crosscorrelating every possible combination of the incident and scattered plane P- and S-waves and then organized them into P-P and P-S local image matrices. Local image matrix preserves all the angle information related to the seismic events. Thus, by working in the image matrix, it is convenient to perform different angle-domain operations (e. g., filtering artifacts, correcting polarity, or conducting illumination and acquisition aperture compensations). Because local image matrix is localized in space, these operations can be designed to be highly flexible, e. g., target-oriented, dip-angle-dependent or reflection-angle-dependent. After performing angle-domain operations, we can stack the partial images in the local image matrix to generate the depth image, or partially sum them up to produce different angle-domain common image gathers, which can be used for amplitude versus angle and migration velocity analysis. We tested several numerical examples to demonstrate the applications of this angle-domain image condition.

  • 出版日期2012-10