摘要

Alumina supports are currently the most widely utilized supports for hydrotreating catalysts, which are used for production of low sulfur diesel fuels. However, the strong metal-support interactions, which may inhibit the desired kinetics of desulfurization, have driven the need to explore novel support systems. This research focuses on one such alternative support system - titania. This study compares the hydrodesulfurization (HDS), hydrodenitrogenation (HDN), and hydrogenation efficiency of sulfide Ni-Mo/Al2O3 and Ni-Mo/TiO2 catalysts in hydrotreating the middle petroleum distillates with and without 20 wt% of rapeseed oil. Hydrotreating experiments were executed in a fixed bed co-current tubular reactor using a commercial Ni-Mo/Al2O3 and an in house prepared Ni-Mo/TiO2 catalyst. The operating parameters were as follows: temperature in the range of 320-360 degrees C, pressure of 4 and 8 MPa, WHSV of ca 1.0 h(-1), and hydrogen to feedstock ratio of ca 240 m(3)/m(3). Ni-Mo/Al2O3 catalyst showed higher HDS, HDN and hydrogenation activity, mainly at 4 MPa pressure. The Ni-Mo/Al2O3 catalyst exhibited greater methanation activity, especially at 8 MPa pressure. The higher efficiency recorded with the Ni-Mo/Al2O3 catalyst may be attributed to this catalyses greater surface, formed by smaller mesopores size range.

  • 出版日期2017-12-1