Annual variations in the Martian bow shock location as observed by the Mars Express mission

作者:Hall B E S*; Lester M; Sanchez Cano B; Nichols J D; Andrews D J; Edberg N J T; Opgenoorth H J; Fraenz M; Holmstrom M; Ramstad R; Witasse O; Cartacci M; Cicchetti A; Noschese R; Orosei R
来源:JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2016, 121(11): 11474-11494.
DOI:10.1002/2016JA023316

摘要

The Martian bow shock distance has previously been shown to be anticorrelated with solar wind dynamic pressure but correlated with solar extreme ultraviolet (EUV) irradiance. Since both of these solar parameters reduce with the square of the distance from the Sun, and Mars' orbit about the Sun increases by similar to 0.3 AU from perihelion to aphelion, it is not clear how the bow shock location will respond to variations in these solar parameters, if at all, throughout its orbit. In order to characterize such a response, we use more than 5 Martian years of Mars Express Analyser of Space Plasma and EneRgetic Atoms (ASPERA-3) Electron Spectrometer measurements to automatically identify 11,861 bow shock crossings. We have discovered that the bow shock distance as a function of solar longitude has a minimum of 2.39 R-M around aphelion and proceeds to a maximum of 2.65 R-M around perihelion, presenting an overall variation of similar to 11% throughout the Martian orbit. We have verified previous findings that the bow shock in southern hemisphere is on average located farther away from Mars than in the northern hemisphere. However, this hemispherical asymmetry is small (total distance variation of similar to 2.4%), and the same annual variations occur irrespective of the hemisphere. We have identified that the bow shock location is more sensitive to variations in the solar EUV irradiance than to solar wind dynamic pressure variations. We have proposed possible interaction mechanisms between the solar EUV flux and Martian plasma environment that could explain this annual variation in bow shock location.

  • 出版日期2016-11