摘要

We conduct a retrospective study of ozone formation in the Lower Fraser Valley (LFV), using numerical models, observations, and emission inventories in order to understand relationships between reductions in local precursor emissions and episodic ozone concentrations. Because there appears to be little or no impact from precursor emissions upwind of the LFV during ozone episodes and because background concentrations of ozone and its precursors are generally from the North Pacific Ocean and quite low, summertime ozone formation in the LFV is mostly caused by local emissions. The observed change in behaviour of ozone formation must, therefore, arise from reductions in local precursor emissions. We exploit the observed changing precursor emission-ozone concentration relationship to perform a dynamical model evaluation. Complicating the analyses are an observed shift in the population patterns within the valley over the last 25 years and a small but documented change in the tropospheric background concentration of ozone. Ozone formation for four episodes, which capture the observed changes in ozone reduction and the different meteorological types that occur during LFV ozone events, are investigated using the Weather Research and Forecasting (WRF)-Sparse Matrix Operator Kernel Emissions (SMOKE)-Community Multiscale Air Quality (CMAQ) modelling system. In order to provide realistic simulations of past events, the SMOKE emission inventory is adjusted to account for temporal changes in the amount of emissions and locations of emission sources. Model output is compared with continuous observations, data collected from field campaigns, and previous modelling efforts. The WRF-SMOKE-CMAQ modelling framework is able to capture the changes in both the magnitude of the ozone concentrations and its spatial behaviour over the period of study. Many of the simulations show that the highest ozone concentrations occur outside the area sampled by the fixed monitoring network and within the LFV's numerous tributary valleys. Not all modelled episodes achieved the same agreement with observations and some of these discrepancies are likely related to shortcomings in the meteorological modelling. The model consistently overpredicts ozone at a number of stations within the City of Vancouver and underpredicts daytime NOx concentrations there. Both results are consistent with a deficiency in NOx emissions. The model shows a changing bias over time which also suggests uncertainties in the emission backcasting.

  • 出版日期2013

全文