摘要

Hypereosinophilic syndrome (HES) is a clinically and pathologically heterogeneous disease entity. It is characterized by persistent eosinophilia and organ damage after excluding other causes. Clonal eosinophilia is distinguished from idiopathic eosinophilia by the presence of histologic, cytogenetic, or molecular evidence of an underlying malignancy. There are two distinct subcategories of clonal eosinophilia: chronic eosinophilic leukemia, not otherwise specified and myeloid/lymphoid neoplasms with eosinophilia and mutations involving platelet-derived growth factor receptor alpha/beta or fibroblast growth factor receptor 1. More than 50% of HES are without knowledge of underlying pathogenic molecular pathways. Here we examined a HES patient by oligo-based aCGH analysis and molecular cytogenetic methods. Examination for the common eosinophilia-related cytogenetic abnormalities involving the genes PDGFRA, PDGFRB, and FGFR1 together with BCR-ABL fusion gene was negative. Cytogenetic analysis and multi-color FISH analysis revealed a novel cryptic three-way translocation t(2;11;5)(p21.3;q13.5;q23.2). By oaCGH analysis we could not find any copy number changes related to the cytogenetic breakpoints but instead detected a 0.9 Mb submicroscopic deletion at 11p14.3. The deleted region involved the 5'-upstream sequences and exons 1-4 of the LUZP2 gene, which encodes a leucine zipper protein. Analysis of surrogate germ-line cells revealed a normal result showing that the detected chromosomal aberrations were acquired. This is the first report on a HES patient associated with a novel complex three-way translocation t(2;11;5)(p21.3;q13.5;q23.2) and a submicroscopic deletion in chromosome band 11p14.3. The study also demonstrates the benefits of oligo-based aCGH analysis in detecting hidden disease related chromosomal abnormalities. The present findings provide additional clues to unravel important molecular pathways in HES to obtain the full spectrum of acquired chromosomal and genomic aberrations in this heterogeneous disease entity. As more cases become characterized this may eventually improve on classification and treatment options.

  • 出版日期2015-8