The Use of Many-Body Expansions and Geometry Optimizations in Fragment-Based Methods

作者:Fedorov Dmitri G; Asada Naoya; Nakanishi Isao; Kitaura Kazuo*
来源:Accounts of Chemical Research, 2014, 47(9): 2846-2856.
DOI:10.1021/ar500224r

摘要

CONSPECTUS: Chemists routinely work with complex molecular systems: solutions, biochemical molecules, and amorphous and composite materials provide some typical examples. The questions one often asks are what are the driving forces for a chemical phenomenon? How reasonable are our views of chemical systems in terms of subunits, such as functional groups and individual molecules? How can one quantify the difference in physicochemical properties of functional units found in a different chemical environment? Are various effects on functional units in molecular systems additive? Can they be represented by pairwise potentials? Are there effects that cannot be represented in a simple picture of pairwise interactions? How can we obtain quantitative values for these effects? Many of these questions can be formulated in the language of many-body effects. They quantify the properties of subunits (fragments), referred to as one-body properties, pairwise interactions (two-body properties), couplings of two-body interactions described by three-body properties, and so on. By introducing the notion of fragments in the framework of quantum chemistry, one obtains two immense benefits: (a) chemists can finally relate to quantum chemistry, which now speaks their language, by discussing chemically interesting subunits and their interactions and (b) calculations become much faster due to a reduced computational scaling. For instance, the somewhat academic sounding question of the importance of three-body effects in water clusters is actually another way of asking how two hydrogen bonds affect each other, when they involve three water molecules. One aspect of this is the many-body charge transfer (CT), because the charge transfers in the two hydrogen bonds are coupled to each other (not independent). In this work, we provide a generalized view on the use of many-body expansions in fragment-based methods, focusing on the general aspects of the property expansion and a contraction of a many-body expansion in a formally two-body series, as exemplified in the development of the fragment molecular orbital (FMO) method. Fragment-based methods have been very successful in delivering the properties of fragments, as well as the fragment interactions, providing insights into complex chemical processes in large molecular systems. We briefly review geometry optimizations performed with fragment-based methods and present an efficient geometry optimization method based on the combination of FMO with molecular mechanics (MM), applied to the complex of a subunit of protein kinase 2 (CK2) with a ligand. FMO results are discussed in comparison with experimental and MM-optimized structures.

  • 出版日期2014-9