摘要

The Slits are secreted proteins with roles in axonal guidance and leukocyte migration. On binding to Robo receptors, Slit2 repels developing axons and inhibits leukocyte chemotaxis. Slit2 is cleaved into Slit2-N, a protein tightly binding to cell membranes, and Slit2-C, a diffusible fragment. In the present study, we characterized the functional role of Slit2-N in vascular smooth muscle cells (VSMCs) and the cell association properties of 2 truncated versions of Slit2-N. Here, we document for the first time that Slit2-N is a chemorepellent of VSMCs. Intact blood vessels expressed Slit2 and Robo receptors as demonstrated by immunohistochemistry and quantitative real time PCR. Recombinant Slit2-N prevented the platelet-derived growth factor (PDGF)-stimulated migration of VSMCs. Slit2-N also abrogated PDGF-mediated activation of small guanosine triphosphatase (GTPase) Rac1, a member of the Rho GTPase superfamily of proteins involved in regulating the actin cytoskeleton. Furthermore, Slit2-N inhibited the PDGF-induced formation of lamellipodia, a crucial cytoskeletal reorganization event for cell motility. Slit2-N had no effect on the PDGF-mediated increase in DNA synthesis determined by [H-3] thymidine uptake, suggesting that VSMC growth is unaffected by Slit2. Analysis of 2 engineered Slit2-N fragments (Slit2-N/1118 and Slit2-N/1121) indicated that 3 amino acids upstream of the putative cleavage site (Arg1121, Thr1122) are involved in the association of Slit2-N to the cell membrane. Our data assign a novel functional role to Slit2 in vascular function and show that cell guidance mechanisms that operate in the developing central nervous system are conserved in VSMCs.

  • 出版日期2006-3-3