摘要

The popular and widely reported lithium-ion battery model is the equivalent circuit model (ECM). The suitable ECM structure and matched model parameters are equally important for the state-of-charge (SOC) estimation algorithm. This paper focuses on high-accuracy models and the estimation algorithm with high robustness and accuracy in practical application. Firstly, five ECMs and five parameter identification approaches are compared under the New European Driving Cycle (NEDC) working condition in the whole SOC area, and the most appropriate model structure and its parameters are determined to improve model accuracy. Based on this, a multi-model and multi-algorithm (MM-MA) method, considering the SOC distribution area, is proposed. The experimental results show that this method can effectively improve the model accuracy. Secondly, a fuzzy fusion SOC estimation algorithm, based on the extended Kalman filter (EKF) and ampere-hour counting (AH) method, is proposed. The fuzzy fusion algorithm takes advantage of the advantages of EKF, and AH avoids the weaknesses. Six case studies show that the SOC estimation result can hold the satisfactory accuracy even when large sensor and model errors exist.