摘要

A low-temperature liquid-to-vapor counterflow microchannel heat exchanger has been redesigned and fabricated using a scalable, low-cost adhesive bonding process. Adhesive erosion concerns are mitigated with the use of sealing bosses. Performance has been tested using water and compressed air as test fluids. Results show greater effectiveness and higher heat transfer rates than the original heat exchanger due to relaxed design constraints afforded with adhesive bonding. A maximum effectiveness of 82.5% was achieved with good agreement between theoretical and experimental values. Although thermal performance was improved, higher pressure drops were noted. Pressure drops were predicted with a maximum error of 16% between theoretical and experimental values. Much of the pressure drop was found to be in the device manifold which can be improved in subsequent designs.

  • 出版日期2012-12-15