摘要

We report results of molecular dynamics simulation studies of the behavior of spherical nanoparticles (NPs) in a dense isotropic nematogen matrix comprised of soft spherocylinders (SSCs). The SSCs exhibit a tendency for frustrated planar anchoring at the NP surface that results in a long-range (compared to the size of the NPs and SSCs) reduction in local orientational ordering and increased fluctuations in local orientational ordering compared to the pure isotropic phase of the SSCs. The potential of mean force between two nanoparticles exhibits a novel long-range repulsive tail separated from short-range molecular packing peaks by a shallow local minimum in free energy. The long-range repulsion is caused by NP-induced ordering fluctuations while the shallow minimum results from increased local ordering within the confinement region in between two NPs. The influence of the NPs on local orientational order in the nematogen matrix and the nematogen-induced interaction between NPs are found to depend strongly on the size of the NPs.

  • 出版日期2006-4-28