Adsorption of 1,2,3-Trichloropropane (TCP) to meet a MCL of 5 ppt

作者:Babcock Roger W Jr*; Harada Bryce K; Lamichhane Krishna M; Tsubota Korey T
来源:Environmental Pollution, 2018, 233: 910-915.
DOI:10.1016/j.envpol.2017.09.085

摘要

1,2,3-Trichioropropane (TCP) is a groundwater contaminant in the drinking water aquifers in Hawaii and some other states. Granular activated carbon (GAC) has been used for 30 years to treat approximately 60 million gallons per day of TCP-contaminated groundwater in Hawaii. The State of Hawaii's current maximum contaminant level (MCL) for TCP is 600 ng/L (ppt), and consideration is being given to lower the MCL to 5 ppt. There is no EPA MCL for TCP. A study was conducted to determine if any GAC could meet a 5 ppt MCL for TCP, and if so, how many bedvolumes (BVs) could be treated prior to breakthrough. Constant Diffusivity-Rapid Small-Scale Column Tests (CD-RSSCTs) were performed to evaluate GAC adsorption of TCP. Three different groundwaters and six different GACs were utilized. The RSSCTs with the currently-utilized GAC were predictive of the performance of the GAC contactors (50,000 BVs to breakthrough). Any of the six GACs could meet a MCL of 5 ppt and some could do so for 150,000 or more BVs. No single GAC was optimal for all three well sites, indicating effects of subtle undefined differences in the water matrix and/or GAC physiochemical properties. The coal-based direct-activated carbon currently being used is the least optimal for all three well sites with respect to meeting a potential new TCP MCL of 5 ppt. The most effective GACs for Kunia were the Calgon coal-based GAC and the Siemens enhanced coconut shell GAC, while the most effective for Waipahu were the Siemens regular and enhanced coconut shell GACs, and the most effective for Mililani was the Calgon coal-based GAC. Choosing just one GAC for use at all three well sites (rather than the optimal for each site) would result in a reduction of treatment run time of 1 year at one well site (63% reduction).

  • 出版日期2018-2