摘要

Predictive models have been developed in several major grape-growing regions to correlate environmental conditions to Erysiphe necator ascospore release; however, these models may not be broadly applicable in regions with different climatic conditions. To assess ascospore release in near-coastal regions of western Oregon, chasmothecia (syn. cleistothecia) were collected prior to leaf drop and placed onto natural and artificial grape trunk segments and overwintered outside. Ascospore release was monitored for three overwintering seasons using custom impaction spore traps from leaf drop (Biologische Bundesanstalt, Bundessortenamt und Chemische Industrie [BBCH] 97) until the onset of the disease epidemic in the following growing season. Airborne inoculum was concurrently monitored in a naturally infested research vineyard. Weather and ascospore release data were used to assess previously developed models and correlate environmental conditions to ascospore release. Ascospore release was predicted by all models poor to bud break (BBCH 08), and was observed from the first rain event following the start of inoculum monitoring until monitoring ceased. Previously developed models over-predicted ascospore release in the Willamette Valley and predicted exhaustion of inoculum prior to bud break. The magnitude of ascospore release could not be correlated to environmental conditions; thus, a binary ascospore release model was developed where release is a function of the collective occurrence of the following factors within a 24-h period: >6 h of cumulative leaf wetness during temperatures >4 degrees C, precipitation >2.5 mm, and relative humidity >80%. The Oregon model was validated using field-collected ascospore datasets, and predicted ascospore release with 66% accuracy (P = 0.02). Extant methods for estimating ascospore release may not be sufficiently accurate to use as predictive models in wet, temperate climatic regions.

  • 出版日期2018-8