Analysis of Arabidopsis thioredoxin-h isotypes identifies discrete domains that confer specific structural and functional properties

作者:Jung Young Jun*; Chi Yong Hun; Chae Ho Byoung; Shin Mi Rim; Lee Eun Seon; Cha Joon Yung; Paeng Seol Ki; Lee Yuno; Park Jin Ho; Kim Woe Yeon; Kang Chang Ho; Lee Kyun Oh; Lee Keun Woo; Yun Dae Jin; Lee Sang Yeol
来源:Biochemical Journal, 2013, 456(1): 13-24.
DOI:10.1042/BJ20130618

摘要

Multiple isoforms of Arabidopsis thaliana h-type thioredoxins (AtTrx-hs) have distinct structural and functional specificities. AtTrx-h3 acts as both a disulfide reductase and as a molecular chaperone. We prepared five representative AtTrx-hs and compared their protein structures and disulfide reductase and molecular chaperone activities. AtTrx-h2 with an N-terminal extension exhibited distinct functional properties with respect to other AtTrx-hs. AtTrx-h2 formed low-molecular-mass structures and exhibited only disulfide reductase activity, whereas the other AtTrx-h isoforms formed high-molecular-mass complexes and displayed both disulfide reductase and molecular chaperone activities. The domains that determine the unique structural and functional properties of each AtTrx-hs protein were determined by constructing a domain-swap between the N- and C-terminal regions of AtTrx-h2 and AtTrx-h3 (designated AtTrx-h-2N3C and AtTrx-h-3N2C respectively), an N-terminal deletion mutant of AtTrx-h2 [AtTrx-h2-N(Delta 19)] and site-directed mutagenesis of AtTrx-h3. AtTrx-h2-N(Delta 19) and AtTrx-h-3N2C exhibited similar properties to those of AtTrx-h2, but AtTrx-h-2N3C behaved more like AtTrx-h3, suggesting that the structural and functional specificities of AtTrx-hs are determined by their C-terminal regions. Hydrophobicity profiling and molecular modelling revealed that Ala(100) and Ala(106) in AtTrx-h3 play critical roles in its structural and functional regulation. When these two residues in AtTrx-h3 were replaced with lysine, AtTrx-h3 functioned like AtTrx-h2. The chaperone function of AtTrx-hs conferred enhanced heat-shock-resistance on a thermosensitive trx1/2-null yeast mutant.

  • 出版日期2013-11-15