摘要

After successfully occupying the benthos of all the Laurentian Great Lakes and connecting channels, quagga mussels [Dreissena rostriformis bugensis (Andrusov, 1897)] have been colonizing the western United States at a much faster rate. Study findings and management experience in the Great Lakes will benefit the water resource managers in the western United States and help them be better prepared to act quickly and effectively to mitigate mussel impacts. We investigated the impacts of dreissenid mussels on nutrients and plankton using a two-dimensional Ecological model of Lake Eric (EcoLE), and compared their impacts with those of mesozooplankters. Model results showed that in the shallow western basin, mussel daily grazing impact was less than 10% of the combined Non-Diatom Edible Algae (NDEA) and diatom biomass, although they cleared a volume equivalent to 20% of the water column daily. Moreover, in the deep central and eastern basins, dreissenids grazed only 1-2% of the NDEA and diatom biomass per day. The relative importance of dreissenids' grazing impact on diatoms and NDEA to those of zooplankton's varied among years and basins in Lake Eric. In general, zooplankton had slightly higher grazing impacts than did the mussels on NDEA and diatoms in the western basin but much higher grazing impacts in the central basin. Dreissenid mussels excreted a big portion of phosphorus in the bottom water, especially in the western basin, while zooplankton kept a big portion of algal phosphorus in the water column, especially in the central and eastern basins. Non-Diatom Inedible Algae (NDIA) abundance increased with more phosphorus available and was less responsive to mussel selective grazing. Dreissenid mussels affected crustacean zooplankton mainly through their impacts on NDEA. Our results thus indicate that dreissenid mussels have weak direct grazing impacts on algal biomass due to a concentration boundary layer above the mussel bed, while their indirect effects through nutrient excretion have much greater and profound negative impacts on the system. EcoLE is a modification of CE-QUAL-W2, which is frequently applied to western aquatic systems, and we suggest that with this modification, the models can be used to predict dreissenid impacts in western lakes, reservoirs, and rivers in which they may become established.

  • 出版日期2011-6