摘要

Clean-up of vinyl chloride (VC)-contaminated groundwater could be enhanced by stimulating aerobic VC-oxidizing bacterial populations (e.g., methanotrophs) with amendments such as molecular oxygen. In addition, ethene gas injection could further stimulate a different group of aerobic ethene- and VC-oxidizing bacteria called "etheneotrophs." We estimated the abundance and activity of these different VC-oxidizing bacteria in portions of a dilute groundwater VC plume subjected to oxygen and ethene biostimulation. Pyrosequencing of 16S rRNA genes, amplified from community DNA extracted from five groundwater monitoring wells, revealed that Proteobacteria dominated the microbial community. Among the Proteobacteria, methanotroph relative abundance was 6.00 % (well RB52I), 2.81 % (well RB46D), 56.3 % (well RB58I), 23.8 % (well RB63I), and 2.57 % (well RB64I). Reverse transcription qPCR (RT-qPCR) analysis was used to determined methanotroph and etheneotroph functional gene expression from selected monitoring wells. Resulting transcript per gene ratios for methanotroph functional genes (pmoA and mmoX) were 0.013 (RB46D), 0.017 (RB63I), 0.112 (RB64I), and 0.004 (RB46D), 0.239 (RB63I), and 0.199 (RB64I), respectively. Transcript per gene ratios for etheneotroph functional genes (etnC and etnE) were 0.37 (RB46D), 0.81 (RB63I), 5.85 (RB64I), and 0.38 (RB46D), 0.67 (RB63I), and 2.28 (RB64I), respectively. When considered along with geochemical and contaminant data from these wells, our RT-qPCR results suggest that methanotrophs and etheneotrophs were participating in VC cometabolism. We conclude that these molecular diagnostic techniques could be helpful to site managers interested in documenting the effectiveness of VC bioremediation strategies.

  • 出版日期2015-11