摘要

Inspired by the work of Lieber and co-workers [F. Patolsky, B.P. Timko, G. Zheng, C.M. Lieber, MRS Bull. 32 (2007) 1421, we present a general discussion of the possibility of using atomic-chain scaled Si nanowires to detect molecules. Surface-modified Si nanowires were optimized by density functional theory (DFT) calculations. The electronic transport properties of the whole system, including Si nanowires and adsorbed molecules, sandwiched between two gold electrodes are investigated by means of non-equilibrium Green's NEGF) formalism. However, the overall transport properties, including current-voltage (I-V) and conductance-voltage (G-V) characteristics hardly show adsorbate sensitivity. Interestingly, our results show that the conductance gap clearly varies with the different adsorbates. Therefore different molecules can cause differences in the conductance gap compared with the bare Si nanowire. The results provide valuable information regarding the development of atomic-chain scaled molecular detectors.