摘要

Plane Couette flow, the flow between two parallel planes moving in opposite directions, is an example of wall-bounded flow experiencing a transition to turbulence with an ordered coexistence of turbulent and laminar domains in some range of Reynolds numbers [R-g, R-t]. When the aspect-ratio is sufficiently large, this coexistence occurs in the form of alternately turbulent and laminar oblique bands. As R goes up trough the upper threshold R-t, the bands disappear progressively to leave room to a uniform regime of featureless turbulence. This continuous transition is studied here by means of under-resolved numerical simulations understood as a modelling approach adapted to the long time, large aspect-ratio limit. The state of the system is quantitatively characterised using standard observables (turbulent fraction and turbulence intensity inside the bands). A pair of complex order parameters is defined for the pattern which is further analysed within a standard Ginzburg-Landau formalism. Coefficients of the model turn out to be comparable to those experimentally determined for cylindrical Couette flow.

  • 出版日期2011-4