摘要

Antioxidants have a number of potential health benefits. The present investigation was designed to determine the relationship between serum alpha- and gamma-tocopherol levels (powerful antioxidants), and leukocyte telomere length (a biomarker of biological aging). A cross-sectional design was employed to study 5768 adults from the National Health and Nutrition Examination Survey (NHANES). DNA was obtained via blood samples. Telomere length was assessed using the quantitative polymerase chain reaction method. Serum concentrations of alpha-and gamma-tocopherol were measured using high performance liquid chromatography (HPLC). Results showed that for each one-year increase in age, telomeres were 15.6 base pairs shorter (F = 410.4, p < 0.0001). After adjusting for differences in the demographic covariates, for each mu g/dL higher level of gamma-tocopherol, telomeres were 0.33 base pairs shorter (F = 7.1, p = 0.0126). Telomeres were approximately 1 year shorter (15.6 base pairs) for each increment of 47.3 to 55.7 mu g/dL of gamma-tocopherol in the blood, depending on the variables controlled. Adults at the 75th percentile of gamma-tocopherol had 2.8-3.4 years greater cellular aging than those at the 25th percentile, depending on the covariates in the model. However, alpha-tocopherol was not related to telomere length. Evidently, gamma-tocopherol levels, but not alpha-tocopherol, account for meaningful increases in biological aging.

  • 出版日期2017-6