Wax Esters from the Marine Copepod Calanus finmarchicus Reduce Diet-Induced Obesity and Obesity-Related Metabolic Disorders in Mice

作者:Hoper Anje C; Salma Wahida; Sollie Selene J; Hafstad Anne D; Lund Jim; Khalid Ahmed M; Raa Jan; Aasum Ellen; Larsen Terje S*
来源:Journal of Nutrition, 2014, 144(2): 164-169.
DOI:10.3945/jn.113.182501

摘要

We showed previously that dietary supplementation with oil from the marine zooplankton Calanus finmarchicus (Calanus oil) attenuates obesity, inflammation, and glucose intolerance in mice. More than 80% of Calanus oil consists of wax esters, i.e., long-chain fatty alcohols linked to long-chain fatty acids In the present study, we compared the metabolic effects of Calanus oil-derived wax esters (WE) with those of purified eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) ethyl esters (E/D) in a mouse model of diet-induced obesity. C57BL/6J mice received a high-fat diet (HFD; 45% energy from fat). After 7 wk, the diet was supplemented with either 1% (wt:wt) WE or 0.2% (wt:wt) E/D. The amount of EPA + DHA in the E/D diet was matched to the total amount of n-3 (omega-3) polyunsaturated fatty acids (PUFAs) in the WE diet. A third group was given an unsupplemented HFD throughout the entire 27-wk feeding period. WE reduced body weight gain, abdominal fat, and liver triacylglycerol by 21%, 34%, and 52%, respectively, and significantly improved glucose tolerance and aerobic capacity. In abdominal fat depots, WE reduced macrophage infiltration by 74% and downregulated expression of proinflammatory genes (tumor necrosis factor-alpha, interleukin-6, and monocyte chemoattractant protein-1), whereas adiponectin expression was significantly upregulated. By comparison, E/D primarily suppressed the expression of proinflammatory genes but had less influence on glucose tolerance than WE. E/D affected obesity parameters, aerobic capacity, or adiponectin expression by < 10%. These results show that the wax ester component of Calanus oil can account for the biologic effects shown previously for the crude oil. However, these effects cannot exclusively be ascribed to the content of n-3 PUFAs in the wax ester fraction.