摘要

In the present study, it is attempted to scrutinize the hydrogen bonding interaction between Carmustine drug and DNA pyrimidine bases by means of density functional theory calculations regarding their geometries, binding energies, vibrational frequencies, and topological features of the electron density in the gas phase and the water solution. Based on the density functional theory results, it is found that the process of intermolecular interaction between Carmustine drug and nucleobases is exothermic and all of the optimized configurations are stable. Furthermore, the negative stability energy represented by a polarizable continuum model shows the significant increase in the solubility of the nucleobase after hydrogen bonding intermolecular interaction in the presence of water solvent. It is also found that the intermolecular hydrogen bonds between drug and the nucleobases play the significant role in the stability of the physisorption configurations. Hydrogen bond energies for hydrogen-bonded complexes are obtained from Espinosa method and the atoms-in-molecules theory are also applied to get a more precise insight into the nature of the intermolecular hydrogen bond interactions.

  • 出版日期2018-8