摘要

Tissue engineering provides new potential treatments for the repair of bone defects. Bone-marrow-derived mesenchymal stem cells (BMSCs) represent an attractive cell source for therapeutic applications involving tissue engineering, although disadvantages, such as pain of harvest and low proliferation efficiency, are major limitations to the application of BMSCs in the clinic. Adipose-derived stem cells (ASCs) with their multilineage potential and satisfactory proliferation potential can be induced into the osteogenic lineage in vitro and can be anchored onto suitable scaffolds as seed cells to repair bone defects successfully in an autologous setting. Previous studies have indicated that both undifferentiated BMSCs and ASCs exhibit immunosuppression and immunoprivilege properties. We compare the immuno-function of undifferentiated and osteo-differentiated ASCs in vitro and explore the feasibility of applying allogeneic ASCs to the repair of ulnar bone defects in the rabbit model. Our study demonstrates that allogeneic osteogenic differentiated ASCs maintain low immunogenicity and negative immunomodulation. The allogeneic osteogenic differentiated ASCs combined with demineralized bone matrix successfully regenerate ulnar bone defects in rabbits without immunosuppressive therapies.