摘要

Tubular braided composites are manufactured using a Maypole braiding machine which interlaces yarns in order to manufacture a braided structure. Braids can be produced in Diamond (1/1), Regular (2/2) and Hercules (3/3) patterns. In addition, axial yarns can be included in order to produce triaxial braid structures. Several analytical and finite element analysis models have been developed in order to predict the elastic properties of braided composites. Despite the fact that many models exist for braided composites, a comprehensive model has not been presented that can capture the variety of braiding patterns which can be manufactured using the braiding process. In this study, a new analytical model has been developed that can describe the elastic properties of Diamond, Regular and Hercules braids. The proposed analytical model uses a volume averaging stiffness method in order to account for yarn undulations and the orientation of braid yarns within the braid structure. The model presented here has been compared with the existing FEA and analytical models and has also been validated experimentally. Experimental validation comprised tensile and torsional tests in order to predict the longitudinal and shear moduli for both Diamond and Regular braid geometries. The experimental and proposed model results highlight the effect of braiding pattern and braiding angle on the mechanical properties.

  • 出版日期2017-12