摘要

The immobilization efficiency of molecular detectors is of great importance with regard to the performances of biosensors such as the sensitivity, stability, and reproducibility. This paper presents a biomimetic olfactory receptor-based biosensor with better performances by improving the immobilization efficiency of molecular detectors for odorant sensing. A mixed self-assembled monolayers (SAMs) functionalized with specific olfactory receptors (ODR-10) was constructed on the sensitive area of surface acoustic wave (SAW) chip. The immobilization of ODR-10 was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The responses of this biosensor to various odorants were recorded by monitoring the resonance frequency shifts of SAW, which is correlated to the mass loading on its sensitive area. All the results demonstrate this biosensor can specifically respond to the natural ligand of ODR-10, diacetyl, with high sensitivity and stability. The sensitivity is 4 kHz/ng, which is 2x higher than that of previous work. The detection limit is 1.2 x 10(-11) mM. The major advances on immobilization efficiency of molecular detectors presented in this work could substantially promote and accelerate the researches and applications of olfactory receptor-based biosensors with different transducers, such as quartz crystal microbalance (QCM), surface plasma resonance (SPR), and field effect transistors (FET).