摘要

It is important to clarify the variational rules between dynamic characteristics and gust response factors (GRFs) of an ultra high-voltage (UHV) transmission tower for the structural design. In this paper, the synchronous multisensors on-site monitoring has been carried out under field wind conditions, which includes field fluctuating wind velocity, acceleration responses, and base bending strains on parts of the just-built transmission tower. The dynamic characteristics of tested transmission tower were investigated by a modal identification method (MIM) and validated those results with a finite-element method (FEM). Similarly, the GRFs based on the top displacement or base dynamic bending stains are calculated and compared by means of a measurement data statistical method and some different quasistatic methods, respectively. The results have shown that the dynamic characteristics obtained from the measurement data analysis with the MIM agree with those from the FEM, which confirms that the FEM and the MIM for dynamic characteristics are consistent and correct. In turn, the GRFs form the measurement displacement analyses have some differences from those calculated with the quasistatic method, and it is necessary to further identify and verify their causations.