A complete parameterisation of the relative humidity and wavelength dependence of the refractive index of hygroscopic inorganic aerosol particles

作者:Cotterell Michael I; Willoughby Rose E; Bzdek Bryan R; Orr Ewing Andrew J; Reid Jonathan P
来源:Atmospheric Chemistry and Physics, 2017, 17(16): 9837-9851.
DOI:10.5194/acp-17-9837-2017

摘要

Calculations of aerosol radiative forcing require knowledge of wavelength-dependent aerosol optical properties, such as single-scattering albedo. These aerosol optical properties can be calculated using Mie theory from knowledge of the key microphysical properties of particle size and refractive index, assuming that atmospheric particles are well-approximated to be spherical and homogeneous. We provide refractive index determinations for aqueous aerosol particles containing the key atmospherically relevant inorganic solutes of NaCl, NaNO3, (NH4)(2)SO4, NH4HSO4 and Na2SO4, reporting the refractive index variation with both wavelength (400-650 nm) and relative humidity (from 100% to the efflorescence value of the salt). The accurate and precise retrieval of refractive index is performed using singleparticle cavity ring-down spectroscopy. This approach involves probing a single aerosol particle confined in a Bessel laser beam optical trap through a combination of extinction measurements using cavity ring-down spectroscopy and elastic light-scattering measurements. Further, we assess the accuracy of these refractive index measurements, comparing our data with previously reported data sets from different measurement techniques but at a single wavelength. Finally, we provide a Cauchy dispersion model that parameterises refractive index measurements in terms of both wavelength and relative humidity. Our parameterisations should provide useful information to researchers requiring an accurate and comprehensive treatment of the wavelength and relative humidity dependence of refractive index for the inorganic component of atmospheric aerosol.

  • 出版日期2017-8-22