A Conserved Active-site Threonine Is Important for Both Sugar and Flavin Oxidations of Pyranose 2-Oxidase

作者:Pitsawong Warintra; Sucharitakul Jeerus; Prongjit Methinee; Tan Tien Chye; Spadiut Oliver; Haltrich Dietmar; Divne Christina; Chaiyen Pimchai*
来源:Journal of Biological Chemistry, 2010, 285(13): 9697-9705.
DOI:10.1074/jbc.M109.073247

摘要

Pyranose 2-oxidase (P2O) catalyzes the oxidation by O(2) of D-glucose and several aldopyranoses to yield the 2-ketoaldoses and H(2)O(2). Based on crystal structures, in one rotamer conformation, the threonine hydroxyl of Thr(169) forms H-bonds to the flavin-N5/O4 locus, whereas, in a different rotamer, it may interact with either sugar or other parts of the P2O center dot sugar complex. Transient kinetics of wild-type (WT) and Thr(169)-> S/N/G/A replacement variants show that D-Glc binds to T169S, T169N, and WT with the same K(d) (45-47 mM), and the hydride transfer rate constants (k(red)) are similar (15.3-9.7 s(-1) at 4 degrees C). k(red) of T169G with D-glucose (0.7 s(-1), 4 degrees C) is significantly less than that of WT but not as severely affected as in T169A (k(red) of 0.03 s(-1) at 25 degrees C). Transient kinetics of WT and mutants using D-galactose show that P2O binds D-galactose with a one-step binding process, different from binding of D- glucose. In T169S, T169N, and T169G, the overall turnover with D- Gal is faster than that of WT due to an increase of kred. In the crystal structure of T169S, Ser(169) O gamma assumes a position identical to that of O gamma 1 in Thr(169); in T169G, solvent molecules may be able to rescue H-bonding. Our data suggest that a competent reductive half-reaction requires a side chain at position 169 that is able to form an H-bond within the ES complex. During the oxidative half-reaction, all mutants failed to stabilize a C4a-hydroperoxyflavin intermediate, thus suggesting that the precise position and geometry of the Thr(169) side chain are required for intermediate stabilization.

  • 出版日期2010-3-26